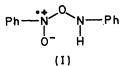
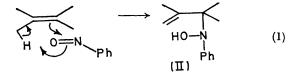
N-Phenyl-N-(1,1,2-trimethylprop-2-enyl)hydroxylamine and its Nitroxide

By G. T. KNIGHT


(The Natural Rubber Producers' Research Association, Welwyn Garden City, Herts.)

Summary The first preparation of an alkenyl-arylhydroxylamine is described.


t-ALKYL-ARYLNITROXIDES have been the subject of several recent e.s.r. studies¹ and are usually prepared by oxidation of the corresponding secondary hydroxylamine. Sullivan² first reported the spectrum of a t-alkenyl-arylnitroxide derived from the reaction of nitrosobenzene with 2,3dimethylbut-2-ene, but he was unable to isolate the hydroxylamine precursor. This nitroxide has a lower anhydrous diethyl ether (30 ml) under a nitrogen atmosphere. Examination of the reaction by t.l.c. after 16 hr. at room temperature showed no residual nitrosobenzene. The products were separated by column chromatography on grade 4 neutral alumina using mixed petroleum (b.p. 40-60°)-diethyl ether solvents. The impure hydroxyl-amine thus obtained was recrystallised six times at -60° from petroleum (b.p. 40-60°), to yield white crystals (320 mg), m.p. 58·2-58·4°. U.v. λ_{max} (MeOH) 249 nm, (ϵ 6840); i.r. (CCl₄), 2·77 (OH), 3·2-3·5 (CH), 5-6 (aromatic),

		Hyperfine splitting constant, gauss.		
Nitroxide		an	a _{H(p,0)}	$a_{\mathrm{H}(m)}$
N-Phenyl-N-(1,1,2-trimethylprop-2-enyl)nitroxide	•••	11.18	2.40	0.85
N-t-Butyl-N-phenyl n itroxide	••	12.40	1.91	0.85
Radical from reaction of nitrosobenzene and 2,3-dimethylbut-2-ene	••	11.14	2.41	0.85

nitrogen splitting constant than was found for t-alkyl-arylnitroxides,³ and, as pointed out by Russell,⁴ has a very similar spectrum to that reported for the adduct from nitrosobenzene and phenylnitroxide (I). I now report the

isolation of the intermediate t-alkenyl-arylhydroxylamine (II) formed by an 'ene' addition of nitrosobenzene to 2,3dimethylbut-2-ene (equation 1), and the e.s.r. spectrum of

the derived nitroxide. Nitrosobenzene $(5 \times 10^{-3} \text{ moles})$ and 2,3-dimethylbut-2-ene $(5 \times 10^{-2} \text{ moles})$ were dissolved in

6.1 (double bond), 7.25 and 7.35 (split CH₃), and 11.1 μ m (terminal double bond); n.m.r.: τ 8.8 (6H, C-CH₃), 8.1 (3H, =C-CH₃), 5.2 (2H, =CH₂), 4.2 (1H, N-OH), and 2.8 (5H, ar-H); radical broadening was observed if the solution was left to stand for a short time.

Oxidation of the hydroxylamine by silver oxide in either benzene or ether yielded the nitroxide as a red viscous oil, u.v. λ_{max} (MeOH), 283.5, 291, 299, and 310 nm.

E.s.r. spectra were recorded on a Varian E.4 spectrometer at 20° in deoxygenated benzene as solvent. The splitting constants of this nitroxide are shown in the Table, together with those of the nitroxide prepared by oxidation of N-t-butyl-N-phenylhydroxylamine (prepared by method of Rassat et al.3) under identical conditions, and the radical product formed in situ from the reaction of nitrosobenzene with 2,3-dimethylbut-2-ene in deoxygenated benzene. The spectra obtained from the t-alkenyl-arylnitroxide and the radical produced in the reaction of nitrosobenzene with 2,3-dimethylbut-2-ene are identical, and agree with the reported data of Sullivan. The splitting constants of N-t-butyl-N-phenylhydroxylamine are similar to those obtained by Rassat³ and confirm that a higher a_n value is obtained with t-alkyl-aryl- than with t-alk-2-enyl-arylnitroxides. The similarity of the splitting constants for alkenyl-arylnitroxides and the Russell adduct radical⁴ would thus appear wholly fortuitous. This represents the first preparation of an authentic N-alkenyl-N-arylhydroxylamine.

I thank Prof. W. A. Waters for recording the e.s.r. spectra.

(Received, June 15th, 1970; Com. 911).